次世代ロケットエンジンの現状と課題

Lei's desktop background

移動手段は?

1. どこでもドア
 2. 帆船
 3. ロケット
 4. その他

膜面形状:約14m×約14mの正方形 推力F=1.12 mNを確認

薄膜太陽電池の実績作り 新惑星探査のための大型太陽電池 ソーラーセイルの実証

14m × 14m: *F*=1 mN

有人探査には 数十kmの帆が必要

セイル推進ロケット

数十 kmのコイルが必要 🚽 磁気プラズマセイル

磁気プラズマセイル

磁場のみ

磁場+プラズマ噴射

磁場の凍結を利用 ©安部・船木研究室(JAXA/ISAS)

燃費が悪いが、地球からの打ち上げには必要

電気推進ロケットと化学推進ロケット

	Fregat Main Engine (S5.92M)	SMART-1 Hall Thruster (PPS-1350)
Propellant	4酸化窒素/非対称 ジメチルヒドラジン	キセノン
Specific Impulse, s	320	1640
Thrust, N	1.96×10^4	6.80×10^{-2}
Thrust time, hr	0.24	5000
Propellant consumed, kg	5350	80
Total Impulse, Ns	1.72×10^{7}	1.2×10^{6}

化学推進では実現困難であった任務が可能になる

電気推進によって 実現可能になった任務

小惑星「イトカワ」
火星の月「フォボス」
Deep space 1
などなどたくさんある

「だいち」(ALOS)で観測した インドネシア メラピ山

大気周縁赤外分光計

赤外線センサ 提供JAXA

地球観測

global variations in Earth's gravity

宇宙重力波望遠鏡

提供ESA

Copyright: Courtesy Alcatel Space Industries

宇宙環境化での実験

提供 NASA(F. R. Chang Díaz)

提供 NASA(F. R. Chang Díaz)

- 1. 軽く小さい
- 2. 耐久性がある
- 3. エネルギー変換効率が高い

1. 軽く小さい

$$m_{\rm i} = m_{\rm f} e^{\left[\frac{\Delta V}{V_{\rm ex}}\right]}$$

ロケットの重量(*m_f*)の軽減

初期重量(*m*_i)の軽減=コストの軽減

2. 耐久性

ひまわり5号:運用予定年数5年(実年数8年)

はやぶさ :16000時間

スペースシャトルやH-IIA 5分程度

60

3. エネルギー変換効率が高い

● 電力供給系が限られている 🌍

● 排熱が限られている

放熱板

Ê

ノズルを通って膨張

比推力:500~1000秒 エネルギー変換効率:0.3-0.5 寿命 1000hr以上

アークジェット

こだま(データ中継衛星)

最大240Mbpsを超えるデータ中継 が可能

化学反応ヒドラジンスラスタ比推力 210 sec

軌道維持(南北制御用) にDCアークジェットを使用

電力 1.8kW 重量 スラスタ 1.8kg 電力制御器 4.2kg 推進剤 ヒドラジンN₂H₄ 比推力 500 sec
ヒドラジン

組成式	
式量	
形状	
密度と相	
融点	
沸点	

N₂H₄ 32.05 g/mol **無色液体** 1.01 g/cm³, 2 °C 113 °C

Wikipediaより

・非対称ジメチルヒドラジン(UDMH) ・モノメチルヒドラジン

アークジェット

ノズルを使って空力的に加速:従来のエンジンと同じ

3,500 K

20,000 K

凍結流損失が起こりやすい

●電離 ●解離 ●回転•振動

➡ 密度が高ければ再結合反応で回収

推力で、0.7倍くらいの差がでることもある

H: Balmer α line

Relative frequency to v_{α} (656.29093 nm), GHz

水プラズマの吸収プロファイルが得られた

Radio-frequency discharge

© Universität Stuttgart

Microwave Electro-Thermal Thruster

ビーミング推進ロケット推進

打ち上げの様子

打ち上げの様子

原子カロケット

1969年にKiwi-NERVA計画によってすでに実証 比推力800秒推力5トン

比推力:750-900 s エネルギー効率:0.7 推力:10mN~10N

スラスタ以外の用途

1

アークヒーター

Copyright © 2008 山田(哲)研究室

© Universität Stuttgart

TPS(Thermal Protection System)

(b) 空気流(低加熱条件)

(c) 空気流(高加熱条件)

(d) N₂流 (高加熱条件) 図7 SiC

カプセルシールド

過去の研究

- アーク風洞を用いた実験
- Expansion Tubeによる実験
- HIESTでの実験

産業応用

• 薄膜製作

TiN ● 3µmの硬質膜 ● 金型や工具の耐摩耗性、耐酸化性、摺動特性が大幅に向上

ジェットエンジン

Pratt & Whitney

TBC

Ê

.

TBC

Bond coat: 酸化対策

TBC yttria (Y_2O_3) -stabilised zirconia (ZrO₂) ジルコニア($ZrO_{2,}$ 二酸化ジルコニウム) 2 - 300твс TBC μm

EBPVD

Bond-coat

(DeMasi-Martin, 1994)

APC

Bond-coat

TGO

۲

2 - 300

μm

TGO

静電加速型

Ê

イオンエンジン

排出速度:30,000-100,000 m/s エネルギー変換効率:0.7-0.8 推力密度:10⁰-<u>10¹ N/m²</u>

はやぶさ

電力:250 〜 380 W/台 (@MOL) 推力:4.2 〜 7.6 mN/台 (@MOL) 比推力:2,900 sec (@MOL) 燃料: Xe (キセノン)60 kg スロットリング: 100 / 90 / 80 / 65 % 耐久性: 18,000 hrs (750 days) ドライ重量: 59 kg (含・ジンバル機構)

イオンエンジン

100kW級イオンエンジン 要求寿命6-10年

カウフマン型

カスプ磁場型

イオンエンジンの寿命

Erosion Pattern on the Downstream Surface of the Accelerator Grid

イオンエンジンの寿命

長寿命化への取り組み

JIEDI (JAXA Ion Engine Development Initiative)

イオンエンジン加速グリッドの耐久性を評価する ための数値解析ツール

スパッタ率の測定
プラズマ状態の計測

QCM トムソン散乱

Laser Thomson Scattering (LTS) Nonintrusive method for measuring electron properties scattering of laser radiation by free charged particles plasma 40 30 signal, photons Laser 20 10--25 -20 -15 -10 5 -5 0 15 20 10 electrons Wave length, nm LTS **Background Experiment** Conclusion
Hall thruster 現在最も注目されているスラスタ

様々なミッションに搭載および搭載予定である

SMART-1

Mission
North South Station keeping MBSAT (モバイル放送用) iPSTAR (ブロードバンド用)
To the Moon SMART-1
Orbit transfer(LEO to GEO)

Hall thruster

What is a life-limiter for Hall thrusters?

CRDS

Acceleration channel Magnetic field profile wall was sputtered

wall,

• Operation becomes unstable

• Thrust performance decreases

Redeposit and form
 coatings on spacecraft
 surfaces

 Experiment Conclusion

Backgroun

Lifetime of Hall thrusters

Before Operation

After Operation

長寿命化のためには?

スラスタ形状や作動条件の最適化

しかしながら、実時間の耐久試験には 莫大な費用と時間がかかる

耐久性の評価システムが必要

耐久性評価システムに求めるもの

- 低い損耗量を測定できる高い感度
- ■設置の容易さ
- ■早い時間応答性

technique

- □ 質量ロス(形状変化)
- QCM(Quartz Crystal Microbalance)
- □ 放射性物質追跡
- □ 質量分析器

 ロ 発光分光法
 ロ レーザー誘起蛍光法
 D Cavity Ring-Down Spectroscopy

CRDS

1

Cavity Ring-Down Spectroscopy

Cavity Ring-Down Spectroscopy

CRDS erosion sensor

cw-CRDS Measurement System

cw-CRDS Measurement System

Hyper-fine structure Aluminum honeycomb

CW-CRDS Mn Measurement System

Discharge oscillation

Thruster

電磁加速型

Ê

MPDスラスタ

比推力:1,000-6,000 sec エネルギー変換効率:0.1-0.5 推力:数mN~数百N

数kAの放電電流が必要

MPDスラスタ Space Flyer Unit(SFU)

約150マイクロ秒のパルス状放電を0.5~1.8 Hzで43,395回繰り返す。 比推力は1100秒,推進剤はヒドラジン

外部磁場印加型MPD

プラズマは周方向のローレンツカを受けて、 径方向外側に拡散

AFMPD

VASIMR

比推力:10,000-30,000 s F. R. Chang Díaz Sci. Am. 283, 72 (2000)

VASIMR

Helium

Hydrogen

VASIMR

提供 NASA(F. R. Chang Díaz)

Fast (115day) Mission Architecture

High thrust Earth spiral (30days)

Heliocentric Trajectory(85days)

Robotic Mars orbit

Isp profile for piloted segment

 ∇ ∇

Crew Lander (60.8 mT Payload) 31.0 mT Habitat 13.5 mT Aeroshell 16.3 mT Descent System

核融合反応で発生する膨大な エネルギーを利用

有人火星探査が可能な燃 費と推力を併せ持ったロ ケットエンジンとなりうる。

Orth et. al.

核融合反応で生成される膨大なエネルギー

従来のラバールノズル等での推力変換システムでは困難

磁気スラストチャンバ:磁場による加速システム

ミッション成立の妥当性

2005年川渕亮、九州大学学士論文

250トンの構造物を宇宙 に持って行くことはもは や夢物語ではない 420 tons

\$130E012016

GXIIでの実証実験

大阪大学レーザー研究所

GXIIでの実験

Laser ✓エネルギー up to 12 kJ ✓波長 0.35/0.53/1.05µm

	EUV	GXII
レーザー出力	2 J	1 kJ
磁石の直径	16 mm	50 mm
磁石の長さ	60 mm	40 mm
ターゲットのサイズ	100 µm, 500 µm	1500 <i>µ</i> m

Motivation

Numerical

力積測定

レーザー生成プラズマが磁石に及ぼす力積を測定

Ê

http://www.space.t.u-tokyo.ac.jp/nlab/index-e.html

Electric propulsion Formation flying 制御

Teledesic/Celestri衛星群計画 軌道上昇、軌道維持・コントロール、軌道離脱

小型アークジェット

Ê

C Horisawa lab. Tokai Univ.

.

フィールドエミッション推進

比推力:6,000-10,000 s エネルギー効率:0.98 インパルス:数μ~数mNs

表面波プラズマスラスタ

超小型プラズマ推進器

レーザーアブレーションスラスタ

©名古屋大学 佐宗研究室

t=0 ms

t=33 ms

A MARINE

t=66 ms

t=99 ms

Ê

©首都大学東京 中野研究室

パルス型プラズマスラスタ

推進剤昇華

比推力:1,000-6,000 s
エネルギー効率:0.1-0.5
インパルス:数μ~数mNs
重量 数kg程度
プラズマ

<u>空力加速&電磁加速に</u> より排出される。 PPT

- ・構造が簡単
- ・貯蔵タンク、燃料供給系が不要

・待機電力不要

Teflon PPT

Teflon

Ignitor

Frame rate : 5 Mpps (200 ns) Exposure time : 30 ns

PPT きく3号

μ LabSat-II

PROITERES Project of OIT Electric-Rocket-Engine Onboard Small Space Ship

質量:10kg 大きさ:一辺30cm程度の立方体 電力:10W 高度:400[~]800km (太陽同期軌道、極軌道) 開発期間:3年 衛星寿命:1年以上

スラスタ

Capacitance	С	9.0 μ F
Charging Voltage	Vo	1400 V
Stored Energy	E ₀	8.8 J

図2 放電写真

£

DT核融合プラズマでの実証実験

At Institute of Laser Engineering Osaka University Or National ignition Facility

数十年後に有人火星探査が可能になる夢を追いかけて

Integrated cavity output spectroscopy (ICOS)

Absorbing species

Laser Thomson Scattering (LTS) scattered light intensity spectral spread electron density $n_e = n_0 \frac{\mathrm{d}\sigma_{\mathrm{R}}(\Delta\lambda,\theta)}{\mathrm{d}\sigma_{\mathrm{T}}(\Delta\lambda,\theta)} \frac{I_{\mathrm{T}}(\Delta\lambda,\theta)}{I_{\mathrm{R}}\Delta\lambda,\theta} \qquad T_{\mathrm{e}} = (\Delta\lambda_{\mathrm{T},1/2})^2 \left(\frac{c}{2\lambda_i \sin(\theta/2)}\right)^2 \frac{m_{\mathrm{e}}}{2e\ln 2}$ $= n_0 \frac{d\sigma_R(\Delta \lambda = 0, \theta)}{r_0^2 [1 - \sin^2 \theta \cos^2 \xi]}$ assumed as to be Maxwellian Thomson $\times \frac{I_{\rm T}(\Delta\lambda,\theta)}{I_{\rm R}} \frac{1}{G(\Delta\lambda,\theta)}$ scattering **Calibrated by Rayleigh** scattering λ LTS **Background Experiment** Conclusion

コーティング

(