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2 Outline 
 Background and Purpose 
 General explanation of tritium behavior in wall materials 

 Experimental details 
 Permeation apparatus 
 W specimens 

 Pure D ion driven permeation 
 Microstructure (annealing temperature) dependence 

 He/D mixed ion driven permeation 
 C/D mixed ion driven permeation 
 Discussion and Summary 
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3 Introduction 
 T retention and permeation to coolant in blankets need to 

be studied for evaluation of T economy and safety. 
 Tungsten is a leading candidate of armor materials of 

blankets. 
 Tungsten has low diffusivity and solubility of T, and 

relatively high trapping energies of defects. 
 Therefore, tungsten armor on reduced activation materials 

of blankets (Ferritic steel, V alloy) can be permeation 
reducer to coolant. 

 However, still basic parameters to determine permeation 
such as effective diffusivity, recombination coefficient etc. 
are not well determined. 

 In addition, effects of mixed ion irradiation (D+He,C) are not 
known well either. 
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6 Tritium behavior in a first wall 
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7 Tritium behavior in a first wall 
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As temperature increased, trapped T decrease,  
but still traps could affect effective diffusivity 
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8 Necessary information for T behavior  
 Surface damage effects (How they affect T retention and 

release) 
 Recoil damage effect 
 Effects of bubbles and blisters (due to oversaturation etc.) 
 Impurity mixing effects (He, wall impurities (C, Be etc.) 

 Effective diffusion mechanism (How they affect T transport) 
 Trap sites effect 
 Microstructure effect (intergranular diffusion, grain boundary 

diffusion) 
 Neutron induced traps (How they affect T retention) 
 Trapping energies 
 Production rate (as a function of dpa) 
 Saturation level with respect to dpa 
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9 Ion driven permeation model (Brice & Doyle) 
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Experimental setup 
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Microwave 
(2.45GHz) 

Gas inlet Deflection coil 

60° 

Three spherical 
electrodes 

IR Heater 
(2kW) 

Magnetic coils 

Q- mass 
analyzer 

ECR plasma 

HiFIT Device  

Permeation Device  
Tungsten 

8mm 

Quartz Rod 

Thermo couple 

Specimen 
Purity : 99.99% 
Annealed: 1573 K for 1h 
Thickness: 75 µm, 30 µm 
Roughness: Ra=0.01µm 
Temperature : ≤ 1050 K 

Experimental device 

Base pressure : ~3 x 10-7 Pa 

Ion beam  
Energy : 0.15 keV-3 keV 
flux(D) : ~1020 m-2s-1 

Species : D3
+,D2

+,D+ 

Impurity(C)：0.1~0.2% 
 Blanket first wall conditions 
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12 
Tungsten specimens 

 W1: Sintered polycrystalline W  annealed at 1573 K. 
 Standard sample in our experiments (medium grains and low 

density defects) 
 W2 : Sintered polycrystalline W  annealed at 2273 K. 
 Large grains and almost no defects 

 W3 : Sintered polycrystalline W  annealed at 1203 K. 
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W1  

W2 

W3 

1 keV D      W 

• Weak grain boundary dependence (factor of two) 
• Peak in permeation flux observed  T ≅ 800 K 

10 µm  

10 µm  

10 µm  

13 Microstructure dependence—SS permeation-- 

H. T. Lee et al., Phys. Scripta., accepted 

E = 1 keV 
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R. Frauenfelder, J. Vac. Sci. Techn. 6 (1969) 388.  
A.P. Zakharov, E.I. Evko. Fiz. Khim. Mekh. Mater. 9 (1973) 29. 
Yu.M. Gasparyan et al.,  J. Nucl. Mater. 390 (2009) 606-609. 

• Effective diffusivity 
values determined from 
lag time measurements. 

 

• There are some 
dependences on 
thickness and 
microstructure.  

 

•Effective diffusivities 
are close to Zakharov’s, 
but much less than  
Frauenfelders. 

•This could be the 
effect of some traps. 

•Need more investigation 
 

14 
Microstructure dependence -Effective diffusivity- 

1 keV D      W 

E = 1 keV 
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He/D mixed ion driven permeation 



ISFNT10, Y. Ueda et al., September, 2011 

16 
He/D mixed ion driven permeation 
 Addition of He (2%) greatly reduces permeation flux. 
 Saturation time almost corresponds to He bubble 

formation time. 
 

H. T. Lee et al., J. Nucl. Mater. (accepted) 

E = 1 keV 

< 800 K  
more reduction 
(less than detection limit) 
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17 Incident flux dependence 
E = 1 keV He:2% 

Permeation flux φp vs. Incident flux φi 

17 

He/D 

 φp ~ φi (D only irradiation) 
 φp ~ φi

1/2 (D/He irradiation) 
 φp : Permeation flux 
 φi : Incident flux 

 Change of flux dependence 
suggests D release from the 
front surface could change 
from diffusion limited (D) to 
recombination limited (D/He). 

 Two possibilities 
 Diffusion increased. 
 Recombination decreased. 

900 K 

850 K 

800 K 
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18 Depth profile of He bubble layer  
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• He bubble layer was observed up to the depth of about 30 µm. 
• Thickness of He bubble layer was larger than ion range（~10 µm). 
• He bubbles are interconnected to form  

18 

E = 1 keV 
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19 He/D effects on retention and blistering 
 Blistering disappeared (or reduced) for He/D irradiation. 
 D retention greatly reduced for He/D irradiation. 
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PISCES results (573 K) 
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C/D mixed ion driven permeation 
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21 C/D mixed ion driven permeation 
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  The steady state D permeation flux for simultaneous     
     D+C case is 20 times larger than that of D-only case. 
  The lag time for simultaneous D+C case is 1.5 times  
     larger than that of D-only case 

 

E = 1 keV 
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22 Temperature & concentration dependence 
 D permeation greatly increased even with C (>0.9%) in ion beam. 
 Strong temperature dependence. 
 Surface elemental composition shows little dependence on temperature 

(C:1.4%).  only temperature affect change of parameters 
 Maximum increment factor in the present exp. : ~250  
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Temperature dependence of permeation Near surface atomic composition  
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H.Y. Peng, Phys. Scripta., accepted 
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23 How C/W mixed layer affect permeation 
 Surface carbon concentration was determined by the balance between 

re-erosion and implantation of C ions. 
 Either significant reduction in surface recombination (more than 10-4) or 

reduction in diffusion (10-2) could cause significant increase in 
permeation. 

Pure D irradiation C/D mixed irradiation 

23 

Irradiation 
side 

Irradiation 
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Permeation 
side 

Permeation 
side 
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1 keV H 
C: ~0.9% W 
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Effect of C/W mixed layer on blistering 

 For high carbon 
concentration in the 
beam (C:0.9%), 
blister appeared. 

 C/W mixed layer 
effectively increases 
T diffusion into the 
bulk over certain 
fluence. 

Atomic composition in tungsten 

1 keV H 
C: ~0.1% 

W 
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25 Mechanism for blistering 

Implantation of H 
 （a few nm ~ 20 nm） 

grain ejection 

Accumulation of H 
at grain boundaries 

Dome-like blisters 

> 1 µm 

H 

Cross section of blister 
(K-dope W) 

Diffusion of D into the bulk is necessary 
for blistering. 
Enhanced bulk diffusion by the C/W layer 
causes blistering. 
An opposite effect was observed for He/D. 
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26 D/C mixed plasma exposure raised retention 

 Planar DC magnetron plasma  
 Energy : ~200 eV (D2

+ mainly) 
 Flux : 1 x 1021 m-2s-1 

 C plate on cathode surface to 
provides C into plasma 

 For D+C, D retention near 
surface (a) and bulk (b) 
increased at elevated temp. 
 
 

D retention in W exposed to pure D plasma (□   ) 
and D+C plasma (▲■) 

∇

V. Alimov et al., J. Nucl. Mater. 375 (2008) 192. 

Pure D 

D+C 
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27 Comments on T behavior in blankets 
 Surface phenomena greatly affect whole T behavior in 

blankets. 
 Permeation barrier increases T concentration in materials 
 To reduce T permeation by putting permeation barrier on the 

permeation side, solute T density increase. Does it affect 
material performance? 
 10-5 D/W for C/D irradiation (1.4%C, 800 K) (Assumption: Zakharov’s 

effective diffusivity) 
 Trapped T density (equilibrium with solute T) increases with the 

increase in solute T. 

High permeation  
to coolant 

Low  
solute T  

W 

First wall  

Low permeation  
to coolant 

High  
solute T  

W FS FS 

Permeation barrier 
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28 Summary on D behavior for mixed irradiation 

 Mechanism of permeation reduction (He/D) and enhancement (C/D) 
 Addition of He→ Effective diffusion near surface area increased.  
                                    Probably due to dense He bubble structure 
 Addition of C→ Recombination or diffusion reduced : under investigation 
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D: diffusion limited 
R: recombination limited 
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29 Concluding summary 
 Mixed ion irradiation (He/D and C/D) into tungsten 

significantly changes permeation. 
 Addition of He : decrease (10-1 at 800 K, and more at <800 K) 

 Correlation with blister suppression 
 Correlation with decrease in retention 

 Addition of C : increase by two orders 
 Correlation with blister enhancement 
 Correlation with increase in retention 

 Strong temperature dependence  
 He or C effect significant at ~800 K 
       close to blanket surface temperature (FS based) 

 Indicating importance to include material mixing effects in T 
modeling in wall materials 

 Microstructure dependence on permeation 
 No significant effects of microstructure (W1, W2, W3) on 

steady-state permeation 

Preferable for 1st wall 
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