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Divertor strategy of ITER

] ITER divertor options Non-nuclearphase  __Nuclear phase
: — H/H DD/DT -
B Option 1:Baseline (CFC/W) 2 o . ——
& h\ > > b\
5
2 H/He DD/DT R
B Option 2:Full W day 1 3 w — 10years 3

[1 Discussions at ITPA DIV/SOL on ITER divertor strateqy

B Heat fluxes
B Fuel retention, fuel removal and dust production

B Material issues (tungsten)

[0 Transient heat pulse, Blistering, He induced structure, combined
of these

B Operational and scenario issues
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Steady-State (slow transient) heat flux to divertor

0 Non-nuclear phase(H, He)
B Peak Power(q,) :~7 MW/m? (SOLPS, no cooling gas injection)

O Nuclear phase (DT)

B g,~ 10 MW/m2 (SOLPS, Cooling gas & Detached plasma)
[0 Plasma detachment reduces heat flux by 75 %
[0 Without detachment, heat flux would be too high
0 Surface temp. below T, ysiai~1200 °C

B An important issue : stable detached plasma operation
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1 Slow transients ok xi-J - -
B 20 MW/m2 10s R. Pitts et al.,

JNM 438 (2013) S48

[0 Test condition for W divertor oo}
B Surface temp. > 2000 °C 200;,,59;
recrysta”ization -0.05 0.00 0_'05 0_'10 0_'15 o_.zo o_.25 0.30

Distance along outer target (m)

Temperature distribution on outer divertor



Transient heat loading (Disruption/VDE) i

- . Disruption heat loading (Non-nuclear Phase factor
[0 Disruption D g )

' MMMEI
B Evenin H/He m- n‘rs

13>26 0.02 0225286 4.1 = 74.3

discharges, melting

75 L 3 30 15->30 002 0253330 45 - 84.9

could take place. 75 H 40 75 25338 001 083383 152> 213

B Pulse Iength - ~1 ms 15 L 8 35 1635 0.01 052>769 94 - 199

i 15 L 18 52 26>52 001 086->343 157 = 295

D EffeCtS on dlvertor 15 L 28 73 37273 0.01 121>11.4 222 - 406
m DiSI’UD'[iOﬂ (unmitiqated) 15 L 40 85 43->85 0.01 139187 255 - 483
COUld melt the Vertical 600 — R. Pitts, J. Nucl. Mater. 438 (2013) S48
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ELM energy in the non-nuclear phase of ITER

ITER : Unmntrnlled ELMs
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For the non-nuclear phase of ITER,

Frequency : 1~10Hz
Pulse length : sub ms

Melting Threshold
1 (MT)

Half I, (7.5 MA) : ELM energy density could be roughly1/5 of MT

(considering possible broadening)

Full I, (15 MA) : ELM energy density significantly exceeds MT
-> unacceptable, needs proper mitigation
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® Melt Layer Structure

Slow transient with excessive heat

TEXTOR exp. :
several tens of MW/m?2 for ~3 s.

A) jULICH

ZEMTRUM

i

Melt layer thickness
can reach up to [.5 mm

Power-handling
capability significantly |

degraded

SN Sa ..

=

unacceptable

JanW.C

oenen | Institut fur Energie und Klimaforschung — Plasmaphysik | Assoziation EURATOM — FZJ
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Slight melting (Disruption, Giant ELM)

Is slight melting acceptable?

B Acceptable step height for ITER W monoblock (~0.3 mm)
B Bridging by melt layer could cause fracture of cooling tube.

B Droplet ek&tion could occur. Only “very slight melting”
B Plasma shap}rq may not occur. | could be acceptable

Q= 1.0 MJim?

W3,R3, 20 exposures

W3 R3 50 exposures

.....“-,_u L
e .
Y iy

] T

imm
— —

Q=1.68Mlm!

E=1.0 MIm2 At = 500 ps 100 pulses
Plasma Gun exp. (QSPA)

Fig. 1. The SEM view of the tungsten tile surface.

B. Bazylev et al., J. Nucl. Mater.390-391 (2009)810-813
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High cycle heat pulse effects

510 Nd/YAG laser
_ (effective pulse length: ~100pus)
~ Base temp.: 500°C
i 240 100x10°
N 80 |-|{[=— YAG Laser (free-run mode) |-
= =
= 150
\% E 20 |-
§ 72 Melting 00 5;) 100 150 200x10°
o n i i n Time (s)
8 ol - conditions _ "' _ _
X Surface roughening
= 30 and local melting
%J ~1/4 of melting
| 12 s threshold

5 "o d

1 10,000 30,000 50,000 200,000
*energy absorption ~0.3 is considered. Shot Number



ELM simulation using e-beams with 4 JULICK
high repetition rates in JUDITH 2

|_U nacceptable?

Pulse energy : 1/5 of Eyt

MT melting
10° cycles recrystallization

Unmitigated ELM heat pulse =g,
In the low IQ case of ITER -

T

FZJ - IEK 2011 EHT =20.00 k%  Defecior = SE1 WD = 25mm

;.

polygonization/recrystallization | = f
around crack edaes

: To avoid surface morpholo-gy- cha{nge,
After J. Linke (F2J) supression to 1/10 of MT (=6 MJm-2s99) is necessary
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Blistering by hydrogen isotope ions

]
[0 Formation conditions

B Fluence >102* m=2, Temperature < (500-600) °C
1 Blistering disappears above ~600 °C

Surface topography 3-D sub-surface morphology
@ = 1026 D/m2 @ = 10?7 D/m? @ =10% I_D/m2

Increase in Temperature

V. Alimov presented
at ICFRM14 (2009)




W surfaces exposed to pure and helium-seeded D plasmas,

@ = 102’ D/m?
\ N * No He ,? b 50 He
Y 4 {pure D-plasma) ~——In D plasma
e gt e o S
~ ,.,{H ﬂ,,, ,\% \ ' 2
- Y = | - : A ;

2 » K " —9 T el
. WL

S g -

I,UUD}{_ 1010 1ty WD:12.3mm - 20KV

Pure D plasma
Texp =533 K

e

7., 000 5;‘00;};; WD 12 5mm. ZOKY.

Helium-seeded D plasma (5% He ions)
T =533 K

exp

He seeded plasma suppresses blistering (many observations).
-> no blistering for He plasma and DT (burning) plasma

© V.Kh. Alimov May 2009




‘Effect of mixed plasma exposure EEIESED

e D, ® Be , OHe bubble

™ ™
D+He (without Be) ( D+Be(+He) (deposition) D+Be(+He) (erosion)

o =\ w

Be deposition layer (~um)

Be/W mixing layer
fae= Fmrar

| c

Retained deuterium can be D retention is suppressed.
gappe_(;l_ = P bubbles 1n the The thin Be/W mixed layer
- eposition layer. PN

High density He bubbles are po 4 ) may obstruct the ditlusion

formed and interconnect, D/Be~0.03 at 573K (dep. T)). of D into the bulk.

They seem to act as diffusion Although the mechanism is not clear. it is interesting that

path for D the formation of He bubbles is suppressed

\_ AN AN S

In all cases, retention and blistering are suppressed. Blistering unlikely in ITER.
19t PSI, M. Miyamoto (2012)



He effects on W

[0 High temperature (> 1700 °C)

B Large He holes and thick tendril o IR o
formation with recrystallization PILOT PSI
y T ~ 2000 °C

[J Medium temperature !
B Nano-structure (W fuzz) formation

[ Low temperature (< ~700 °C) s
B Nanometric He bubble formation PISCES (UCSD) NAGDIS (Nagoya U.)

(a few nm) T~850°C T~1100°C
B Hardening and reduction of thermN L o .,

conductivity

PISCES (UCSD) | 1 0. &
T< 600°C N8
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Present knowledge on W fuzz

[0 Formation conditions

Temperature : > 700 °C, He flux : > 5x10%?Im?s,
an ion enerqy > 20-30eV.

The area of fuzz could be very limited near the strike points.

In detached plasmas, fuzz is unlikely formed because of very low
lon energies (a few eV).

[l General properties and their effects

Advantages: Low sputtering erosion. Resistant to pulsed heat
loading, Reduction of secondary electron emission

Disadvantages: Erosion by unipolar arcing (leading to Dust
formation).
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Formation area of W fuzz

1200 Jsut CC) RACLETTE + SOLPSq,
' =0~ Qpr =10, G, peax ~10 MWm2
He induced 100 ; -O- HQT PSGLI:Q; n,:w, A pear ~8 MWmM?2 20" _PSL
W fuzz | 800 . =O= He: Pgg = 40 MW, q o ~6 MWM?2 R. Pitts et al.
s 500 ; | | | |
sof | )
2005

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Distance along outer target (m) —

Calculation for 8 mm W mono-block
thickness

For non-nuclear phases, peak temperature will be about 800 °C or less.
W fuzz : very limited area near the strike points.

For nuclear phases,

W fuzz : limited area also, because it could not grow in detached plasmas.




Critical evidence of unipolar arc (UA) 20

Demonstration of ELMs on nanostructured W using laser.
UA is confirmed from the jump of the floating potential.

' WVT' Yy

vacuum
chamber

wiewin:
port o

Ruby
laser

&
optical filters

/

\ |c:c D
mirror (i) from bottom

20 I 1

unipolar

100 arcing
-120
-140

target voltage [V]
&
=

S. Kajita et al. Nucl.
Fusion (Letter) (2009) B x J direction

time [ms]



Arcing on premade fuzz-W in LHD 21

500pm

200.0um

100.0

200.0pm
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4
7,

-Nanostructured W formed in the ]
NAGDIS-Il was installed in LHD. -This results strongly suggest that
arcing can be easily initiated on W fuzz.

asLpor :H -Since the magnetic field direction was
almost normal to the target, the
motion was Brownian-like.

-Arcing was initiated by the
exposure to the LHD plasma, the
duration of which was 2s. M. Tokitani et al. Nucl. Fusion 51 (2011) 102001.



* Arc frack shape consistent with motion in
“retrograde” BxJ, . direction

* At least one of the arcs starts on the fuzzy
surface

* Traces split, affecting large areas

* Fuzz appears to be completely
suppressed by arcing——)> No release of W

S5um

BEl 30w WO Fmam EEIE

5 2wV WD2ZImm S540 5,000 e Spm
o oA = Sampile W Furz Arc Track g

wrr Arr Track Snn B St 018

i - i
i1 et Ty L R
Dii-D
C.P. Wong/PFMC Conference/April 2013
S,

\_\_'___._.--""'--. S '

Arcinggh premade W fuzz in DIII-D
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Conditions of arcing of W fuzz

[l Experiences from various devices
B NAGDIS : arcing on fuzz with ion bias over 70 V
DIlI-D : arcing on premade fuzz
C-Mod : No arcing probably due to low T, (20-30 eV)
LHD : arcing on premade fuzz without heat pulse (T, ~ 20 eV)
B MAGNUM : No arcing on fuzz even with pulsed heat (T.~1-2 eV)

[0 Suggestion from these results

B High ion bombarding energies or high sheath potential (high
T.) could sustain arcing. But so far we do not understand the exact
conditions of arcing in actual confinement devices.

D ErOSiOn rate *Kajita et al., Plasma Phys. Control. Fusion 54 (2012) 035009 (9pp)
B According to Kajita*, ~10 pg / 1 ms per one arc track. But DIlI-D
exp. showed no W release by arcing.

->needs more investigation

B Arcing may be an issue in terms of core plasma contamination,
but not be an issue in terms of W monoblock lifetime.
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Pulse plasma effects on W fuzz

He pl
Peak surface temperature DL :
2000 . 50 ] Qpg~11MIM?
! Hydrogen < 4wk I
o — 0.3M).m™* <= E E
%1541[:--1m82 % of E
5 ; i i3
E 1200 : -40 E_ PP IT N T R S (R ST N ST T S SN ST | ._g
© | SlmpInyuzz S VRN
g i ERN «— 3
£ 800 | anneal out. S a0k
@ No W release. 2 400t
4‘][} T T T L [ 1 L 1 T I = E =
1602 1604 1606 1608 1610 T s00f He Il (468.6nm)  s8
Time(s) 2400 2600 2800 3000 5200 3400

time {us) Droplet

formation

<0.1 0.25 0.35 0.5 MJ/m? (partially)
Pilot PSI Plasma Gun (U. Hyoqgo)
(Zoth PSI’ G. De Temmerman et al) (D N|Sh|_||ma. et a.l., J. NUC' Mater. 434 (2013) 230)

Difference could be due to pulse length and/or plasma Te 2 need more investigation
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Surface He holes (> ~ 1700 °C)

[1 Porous structure reduces effective thermal conductivity
and power handling capability.

[l He bubbles are formed not only on the surface but also
along grain boundary, which weaken adhesion of grains.

[1 In some preliminary experiments, grain ejection by
plasma particle exposure was observed, but not very
significant so far. 2 needs more investigation

Results from NAGDIS Results from MAGNUM
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Alleviation of He holes by pulsed heat

[1 He hole structure is
irradiated by pulsed
laser

[1 Pulsed laser
B 5~7ns (Nd/YAG)
B 0.6 ms (Ruby)

[1 Short pulse (5-7 ns)

0 ELM-like (lonq) pulse
(0.6 ms)

B Smoothing occurred

A 2.00 pm |
 ELM-like : 0.6 ms
Increase in energy

:> Possibility of
surface repairment

S. Kajita et al., PFR 2, 009 (2007)
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O Measured ablation threshold much lower than

x-0.07MJ:m-2

L expected

016
| 1.6T, 10 Pa I _
5 0121 600C 1
10x 0. 1*5MJ_I:IH'I':2 _ i LA _He] 1000c _-
i f @ 0.08} . )

2 A
= N _
= 0041 ]
o ]

000  emsa 4.

00 02 04 06 08 10
Energy density to the target (MJ.m?)

10x 0.5MJ.m27. "

‘ Plasma enhanced surface ablation

G. De Temmerman et al, lAEA FEC, 2010

2N gth ITPA SOL/Div meeting, Juelich, January 2012 @ F




a Comparison of damage - summary.

'. ; [] laseronly
Open SVmbOIS' \ laser on heated sample
Laser only i A 1aser on samples exposed to D-plasma
. : ' | ' T
Filled symbols: @ _simutianeous plasma and laser no visible damage
Laser + p|asma 50 A T roughening / re_crystallization |
| heavy roughening / melt pools
y é_' 1 -
n
> | - 40 N
(S e melt pool r H
8 g ] cracking
o || % 304 ® -
2| 3
> = 7 L
2l ®©
(@) S - n
S8
93]
S| © .
5 2 10
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1 A
) 0 T ' | ' | ' | ' I ' I -
0 100 200 300 400 500

base temperature [°C]

7oktober2013



Plasma-enhanced surface damage
| 0O Synergistic effect:
1OXOO7M~] nes 0 Bubble formation due to high-flux plasma

0 Explosive release of material during transient

Transient heating

Transient ‘U’ ‘U’ \U' \U,

heating ~ Gas, metal
particles,
radicals

009457 e '|U|

'__10x 0. 15MJ m-2

0009457 10 pm

1OX 0. 5I\/IJ m'2’

Re-definition of tolerable energy densitites in
ITER might be necessary

G. De Temmerman et al, IAEA FEC, 2010

* 6" ITPA SOL/Div meeting, Juelich, January 2012

00096845



Conclusions 1 (particle loading)

1 H/D/T plasma exposure (< 600 °C)
B Blistering is not an issue in ITER (and DEMO).
B Combination with pulsed plasmas could enhance erosion.

[l He nanometric bubbles (< 700 °C)

B Nanometric bubble layer slightly deteriorate thermal and
mechanical properties, but itself is not an issue.

B Combination with pulsed plasmas could enhance erosion.

1 W fuzz by He (> 700 °C)

B There are several preferable features (e.g. low sputtering
erosion), but unipolar arcing could enhance erosion (need more

Investigation, especially in magnetic confinement devices).

B Response to pulsed heat should be further investigated (lIts
Impact on W fuzz is not still clear).

[J He holes (> ~1700 °C, also recrystallization occurs)

B Cracking and dust ejection could be an issue (heed more
Investigation)

31



32
Conclusions 2 (heat loading)

1 Disruption/ELM

B Slight melting could be acceptable, but repeated melting causes
brittle and uneven morphologies, unacceptable. - Clarifying melt
layer behavior and its impacts on core plasmas are necessary

B High cycle repeated ELM-like heat (even 1/5 of the melting
threshold) could cause surface roughening and local melting.
Further studies on cracking thresholds and impact on plasma
performance are necessatry.

B Combined plasma exposure could reduce the damage threshold
of pulsed heat. (need more investigation with high flux plasma)
0 Surface repairment

B Some ELM-like heat pulse may alleviate He induced morphologies
(W fuzz, He holes) ->may be useful for temporal surface
repairment (need more investigation)
1 Appropriate mitigation (control) of transients (slow
transient, disruption/VDE, EL M) are mandatory.
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