Research status and issues of tungsten plasma facing materials for ITER and beyond

<u>Y. Ueda</u> (Osaka Univ.) J. W. Coenen (FZJ), G. De Temmerman (DIFFER), R. Doerner (UCSD), J. Linke (FZJ), V. Philipps (FZJ), E. Tsitrone (CEA)

11th International Symposium on Fusion Nuclear Technology

16-20 September 2013. Barcelona, Spair

Divertor strategy of ITER

- Heat fluxes
- Fuel retention, fuel removal and dust production
- Material issues (tungsten)
 - Transient heat pulse, Blistering, He induced structure, combined of these
- Operational and scenario issues

Outline

- Heat flux conditions of ITER divertor
- Transient heat loading effects on melting and morphology changes
- Morphology changes by particle loadings
 - Blistering by hydrogen isotopes (H/D/T)
 - Helium effects
- Combined effects of heat and particle loading
- Conclusions

Outline

- Heat flux conditions of ITER divertor
- Transient heat loading effects on melting and morphology changes

4

- Morphology changes by particle loading
 - Blistering by hydrogen isotopes (H/D/T)
 - Helium effects
- Combined effects of heat and particle loading
- □ Summary

Steady-State (slow transient) heat flux to divertor

- Non-nuclear phase(H, He)
 - Peak Power(q_{\perp}) : ~7 MW/m² (SOLPS, no cooling gas injection)
- Nuclear phase (DT)
 - q_{\perp} ~ 10 MW/m² (SOLPS, Cooling gas & Detached plasma)
 - Plasma detachment reduces heat flux by 75 %
 - Without detachment, heat flux would be too high
 - □ Surface temp. below T_{recrystallize}~1200 °C
 - An important issue : stable detached plasma operation

Temperature distribution on outer divertor

Transient heat loading(Disruption/VDE)

Disru

Disruption

- Even in H/He discharges, melting could take place.
- Pulse length : <u>~1 ms</u>
- Effects on divertor
 - Disruption (<u>unmitigated</u>) could melt the vertical target of divertor
 - VDE (<u>unmitigated</u>) could melt baffle (W) and lower first wall (Be)

otion heat loading (Non-nuclear Phase)							factor
l _p MA	Mode	P _{IN} MW	W _p MJ	E _{transient} MJ	λ _q m	q⊥ MJ m⁻²	€ MJ m⁻²s⁻¹/2
7.5	L	20	26	13 → 26	0.02	0.22 → 2.86	4.1 → 74.3
7.5	L	30	30	15 → 30	0.02	0.25 → 3.30	4.5 → 84.9
7.5	Н	40	75	25 → 38	0.01	0.83 → 8.3	15.2 → 213
15	L	8	35	16 → 35	0.01	0.52 → 7.69	9.4 → 199
15	L	18	52	26 → 52	0.01	0.86 → 3.43	15.7 → 295
15	L	28	73	37 → 73	0.01	1.21 → 11.4	22.2 → 406
15	L	40	85	43 → 85	0.01	1.39 → 18.7	25.5 → 483

R. Pitts, J. Nucl. Mater. 438 (2013) S48

Melting threshold ~<u>50 MJ/m⁻²s^{-1/2}</u>

Heat flux

Non-active phase disruptions	Major Disruption	Downward VDE
Unmitigated	~300	~50
Mitigated	~1400	~300

Shot No. in a non-nuclear phase

R (cm)

ELM energy in the non-nuclear phase of ITER

- Half Ip (7.5 MA): ELM energy density could be roughly1/5 of MT(considering possible broadening)Full Ip (15 MA): ELM energy density significantly exceeds MT
 - -> unacceptable, needs proper mitigation

Outline

- Heat flux conditions of ITER divertor
- Transient heat loading effects on melting and morphology changes
- Morphology changes by particle loading
 - Blistering by hydrogen isotopes (H/D/T)
 - Helium effects
- Combined effects of heat and particle loading
- Summary

Melt Layer Structure

Jan W. Coenen | Institut für Energie und Klimaforschung - Plasmaphysik | Assoziation EURATOM - FZJ

Slight melting (Disruption, Giant ELM)

- Is slight melting acceptable?
 - Acceptable step height for ITER W monoblock (~0.3 mm)
 - Bridging by melt layer could cause fracture of cooling tube.
 - Droplet ejection could occur.
 - Plasma shaping may not occur.

Only "very slight melting" could be acceptable

E = 1.0 MJm⁻² Δt = 500 μs 100 pulses Plasma Gun exp. (QSPA)

Fig. 1. The SEM view of the tungsten tile surface.

B. Bazylev et al., J. Nucl. Mater. 390-391 (2009)810-813

High cycle heat pulse effects

After J. Linke (FZJ)

To avoid surface morphology change, supression to 1/10 of MT (<u>~6 MJm⁻²s^{-0.5}</u>) is necessary

Outline

- Heat flux conditions of ITER divertor
- Transient heat loading effects on melting and morphology changes
- Morphology changes by particle loading
 - Blistering by hydrogen isotopes (H/D/T)
 - Helium effects
- Combined effects of heat and particle loading
- Summary

Blistering by hydrogen isotope ions

Formation conditions

in Temperature

Increase

Fluence >10²⁴ m⁻², Temperature < (500-600) °C

Blistering <u>disappears above ~600 °C</u>

V. Alimov presented at ICFRM14 (2009)

W surfaces exposed to pure and helium-seeded D plasmas, $\Phi = 10^{27} \text{ D/m}^2$

Helium-seeded D plasma (5% He ions) $T_{exp} = 533 \text{ K}$

He seeded plasma suppresses blistering (many observations). \rightarrow no blistering for <u>He plasma</u> and <u>DT (burning) plasma</u>

Effect of mixed plasma exposure Discussion

In all cases, retention and blistering are suppressed. Blistering unlikely in ITER.

19th PSI, M. Miyamoto (2012)

He effects on W

High temperature (> 1700 °C)

Large **He holes** and **thick tendril** formation with recrystallization

Medium temperature

Nano-structure (W fuzz) formation

Low temperature (< ~700 °C)

- Nanometric He bubble formation (a few nm)
- Hardening and reduction of thermal conductivity

T ~ 2000 °C

RN09272005 (d) 9000 s 5 μm 200nm

PISCES (UCSD) NAGDIS (Nagoya U.)

T ~ 1100 °C

T~850 °C

Present knowledge on W fuzz

Formation conditions

- Temperature : > 700 °C, He flux : > 5x10²¹m⁻²s⁻¹, an ion energy > 20-30eV.
- The area of fuzz could be very limited near the strike points.
- In detached plasmas, fuzz is unlikely formed because of very low ion energies (a few eV).

General properties and their effects

- <u>Advantages</u>: Low sputtering erosion. Resistant to pulsed heat loading, Reduction of secondary electron emission
- Disadvantages: Erosion by unipolar arcing (leading to Dust formation).

Formation area of W fuzz

For non-nuclear phases, peak temperature will be about 800 °C or less.

W fuzz : very limited area near the strike points.

For nuclear phases,

W fuzz : limited area also, because it could not grow in detached plasmas.

Critical evidence of unipolar arc (UA)

20

Demonstration of ELMs on nanostructured W using laser.
UA is confirmed from the jump of the floating potential.

Arcing on premade fuzz-W in LHD

(b-1) 8.0 um 7.0 500µm 6.0 5.0 250.0 8.8um 4.0 0.0 250.0 500.0um (b-2) 200.0µr 7.0 µn 100.0 7.8µm 3.0 2.0 0.0 100.0 50um 200.0um

-Since the magnetic field direction was almost normal to the target, the motion was Brownian-like.

-This results strongly suggest that arcing can be easily initiated on W fuzz.

M. Tokitani *et al.* Nucl. Fusion 51 (2011) 102001.

-Nanostructured W formed in the NAGDIS-II was installed in LHD.

-Arcing was initiated by the exposure to the LHD plasma, the duration of which was 2s.

Arcs are Efficient in Removing Fuzz, after 3 VDEs

- Arc track shape consistent with motion in "retrograde" BxJ_{arc} direction
- At least one of the arcs starts on the fuzzy surface
- Traces split, affecting large areas
- Fuzz appears to be completely suppressed by arcing > No release of W

C.P. Wong/PFMC Conference/April 2013

Arcing on premade W fuzz in DIII-D

Conditions of arcing of W fuzz

- Experiences from various devices
 - NAGDIS : arcing on fuzz with ion bias over 70 V
 - DIII-D : <u>arcing</u> on premade fuzz
 - <u>C-Mod</u> : <u>No arcing</u> probably due to low T_e (<u>20-30 eV</u>)
 - LHD : arcing on premade fuzz without heat pulse (T_e ~ 20 eV)
 - MAGNUM : No arcing on fuzz even with pulsed heat (T_e~1-2 eV)
- Suggestion from these results
 - High ion bombarding energies or high sheath potential (high <u>T_e</u>) could sustain arcing. But so far we do not understand the exact conditions of arcing in actual confinement devices.
- Erosion rate *Kajita et al., Plasma Phys. Control. Fusion 54 (2012) 035009 (9pp)
 According to Kajita*, ~10 µg / 1 ms per one arc track. But DIII-D
 - exp. showed no W release by arcing.

\rightarrow needs more investigation

Arcing may be an issue in terms of <u>core plasma contamination</u>, but **not** be an issue in terms of <u>W monoblock lifetime</u>.

Pulse plasma effects on W fuzz

Difference could be due to <u>pulse length</u> and/or <u>plasma Te</u> \rightarrow <u>need more investigation</u>

Surface He holes (> ~ 1700 °C)

- Porous structure <u>reduces effective thermal conductivity</u> and power handling capability.
- He bubbles are formed not only on the surface but also along grain boundary, which weaken adhesion of grains.
- In some preliminary experiments, grain ejection by plasma particle exposure was observed, but not very significant so far. → <u>needs more investigation</u>

Results from NAGDIS

Results from MAGNUM

Alleviation of He holes by pulsed heat

- He hole structure is irradiated by pulsed laser
- Pulsed laser

- 5~7 ns (Nd/YAG)
- 0.6 ms (Ruby)
- Short pulse (5-7 ns)
 - Roughness increased
- ELM-like (long) pulse (0.6 ms)
 - Smoothing occurred

S. Kajita et al., PFR 2, 009 (2007)

Outline

- Heat flux conditions of ITER divertor
- Transient heat loading effects on melting and morphology changes
- Morphology changes by particle loading
 - Blistering by hydrogen isotopes (H/D/T)
 - Helium effects
- Combined effects of heat and particle loading
- Summary

Plasma-enhanced surface damage

G. De Temmerman et al, IAEA FEC, 2010

6th ITPA SOL/Div meeting, Juelich, January 2012

Comparison of damage - summary

00094575

00096845

10x 0.07MJ.m⁻²

10x 0.15MJ.m⁻²

10x 0.5MJ.m⁻²

Z M B Uni Basel

Z M B Uni Base

Z M B Uni Basel

10 um

10 µm

Plasma-enhanced surface damage

Synergistic effect:

- Bubble formation due to high-flux plasma
- Explosive release of material during transient

Re-definition of tolerable energy densitites in ITER might be necessary

G. De Temmerman et al, IAEA FEC, 2010

6th ITPA SOL/Div meeting, Juelich, January 2012

Conclusions 1 (particle loading)

H/D/T plasma exposure ($\leq 600 \ ^{\circ}C$)

Blistering is not an issue in ITER (and DEMO).

Combination with pulsed plasmas could enhance erosion.

□ He nanometric bubbles (< 700 °C)

Nanometric bubble layer slightly deteriorate thermal and mechanical properties, but itself is not an issue.

Combination with pulsed plasmas could enhance erosion.

□ W fuzz by He (> 700 °C)

- There are several preferable features (e.g. low sputtering erosion), but unipolar arcing could enhance erosion (<u>need more</u> <u>investigation, especially in magnetic confinement devices).</u>
- Response to pulsed heat should be further investigated (Its impact on W fuzz is not still clear).
- He holes (> ~1700 °C, also recrystallization occurs)
 - Cracking and dust ejection could be an issue (need more investigation)

Conclusions 2 (heat loading)

Disruption/ELM

- Slight melting could be acceptable, but repeated melting causes brittle and uneven morphologies, <u>unacceptable</u>. → <u>Clarifying melt</u> <u>layer behavior and its impacts on core plasmas are necessary</u>
- High cycle repeated ELM-like heat (even 1/5 of the melting threshold) could cause surface roughening and local melting. <u>Further studies on cracking thresholds and impact on plasma</u> <u>performance are necessary.</u>
 - **Combined plasma exposure** could reduce the damage threshold of pulsed heat. (need more investigation with high flux plasma)

Surface repairment

- Some ELM-like heat pulse may alleviate He induced morphologies (W fuzz, He holes) \rightarrow may be useful for temporal surface repairment (need more investigation)
- □ Appropriate mitigation (control) of transients (slow transient, disruption/VDE, ELM) are mandatory.