

Detection of trace rhenium in tungsten by laser-induced breakdown spectroscopy

Hikaru Sugihara¹, Kenzo Ibano¹, Yoshio Ueda¹, Tomohide Nakano², Daisuke Nishijima³ Yasushi Oshikane¹, Kohei Yamanoi⁴, Nobuhiko Sarukura⁴ ¹ Graduate School of Engineering, Osaka University ²Japan Atomic Energy Agency ³Univ of California-San Diego ⁴Institute of Laser Engineering, Osaka University

Background

Table1. Power-plant transmutation response summary for W[2]. Tungsten is useful as a PFM.(high melting point, high thermal ^{187}W **Concentration of product in** Starting Transmutation 23.85 conductivity) composition products bracket(at%) after irradiating ^{186}W (at%) for When absorbing neutrons, tungsten changes to rhenium after beta 5year 1year decay. W(100) 98.9 94.0 ^{185}W W In order to safely operate the fusion reactor, it is necessary to 75.10 3.80 Re 0.91 evaluate the neutron irradiation dose. Fig.1. Reaction chains of ¹⁸⁶W[1]. Os 0.06 1.38

The neutron irradiation dose can be estimated from trace rhenium in tungsten

Conclusion

Purpose

Detection of trace amount of rhenium in tungsten by LIBS
In situ diagnostic method using CF-LIBS is suitable for the environment like fusion reactor.

- -Neutron irradiation dose is evaluated from the composition ratio of rhenium in tungsten.
- Detecting trace amount of rhenium in tungsten was achieved by CF-LIBS method.
- Improvement of accuracy and sensitivity and investigation of detection limit are necessary.

Experimental

Results & Discussion

[1]

[3]

SEM & EDS

VV I	400.875	8.3e+5	3.221556	0.000000	9	/			24000			
WI	407.436	1.00E+7	3.408091	0.365913	7	7			16000 - 2000 12000 - 2000 - 2000 - 2000			
WI	429.461	3.04E+6	3.252077	0.365913	5	7						
WI	488.670	8.1E+5	3.307462	0.771099	11	9	200 μm Re M 200 μm W M 200 μm IMG1					
Re I	368.951	1.96E+8	5.122162	1.762666	6	8	Fig.7. SEM image & EDS analysis					
Re I	373.531	1.15E+6	6.248273	2.929972	10	10	No difference in composition ratio was					
Re I	488.9136	1.15E+6	2.535204	0	8	6		Table4. Result of CF-LIBS & EDS				
Re I	527.1001	1.47E+8	5.281512	2.929972	8	10		sample	CF-LIBS(at%)	EDS(at%)		
Re I	527.5549	3.03E+5	2.349513	0	6	6	part and the non-irradiated part.	1%Re	3.1	1.7 <u>±</u> 0.86		
	Each peak well matches the NIST database						the composition ratio of the sample	10%Re	8.3	9.0±0.31		
							and the generated plasma is equal.					
eference												
T. Noda et al. Journal of Nuclear Materials 258-263 (1998) 934-939							[2] M.R.Gilbert et al. Nucl. Fusion 51 (2011) 043005					
A.CIUCCI, M.CORSI, et al. Applied Spectroscopy, vol. 53, issue 8, pp. 960-964						50-964	[4] <u>https://www.nist.gov/pml/atomic-spectra-database</u>					
nttps://w	ittps://www.cfa.narvard.edu/amp/ampdata/kurucz23/sekur.ntmi											

[E-mail] sugihara-h@st.eie.eng.osaka-u.ac.jp [60th Annual Meeting of the APS Division of Plasma Physics], Monday-Friday, November 5-9, 2018