Introduction of kinetic effects to fluid simulation by a particle model

Akito Tanaka¹, Kenzo Ibano¹, Mayuko Obiki¹, Tomonori Takizuka¹, Heun Tae Lee¹, Yoshio Ueda¹, Nobuhiko Hayashi², Kazuo Hoshino³

1: Graduate School of Engineering, Osaka University 2: National Institutes for Quantum and Radiological Science and Technology 3: Faculty of Science and Technology, Keio University

- In the divertor region, collisionless high energy particles exist and kinetic effects are important.
- Fluid simulations[1,2] do not sufficiently consider kinetic effects, and tend to estimate lower T_e and higher n_e in the divertor region[3].
- Fluid simulations tend to underestimate parallel ion SOL flows at the low field side[4].
- **Introduction of kinetic effects to fluid simulation is necessary**
- A particle model is effective to treat kinetic effects because it directly calculates particle motion and velocity distribution.

The purpose of this study is to introduce kinetic effects to fluid

Simulation system of fluid/particle model

大阪大学

OSAKA UNIVERSITY

Fluid model (finite element) Particle model Non uniform shape mesh Square mesh along the magnetic field line (each side is 0.01m) radial direction i x direction: m, y direction: n poloidal direction j $m \times n = 400 \times 400$ $i \times j = 61 \times 124$ (plasma region $i \times j=35 \times 124$)

60th Annual Meeting of the APS Division of Plasma Physics Co-Located with the 71st Annual Gaseous Electronics Conference, Portland, Oregon, November 5-9, 2018