Background

- The formation of fiber-like nanostructures on tungsten (W) and molybdenum (Mo) are observed after helium (He) plasma exposure.
- Their formation mechanism has not been understood well.
- The He bubble seems to have a influence on these nanostructures.

Purpose

1. To investigate microscopic relationship between metal and He bubble
 - Calculate variations of He binding energies using first principle calculation based on density functional theory (DFT)
2. To expand macroscopic simulation from DFT calculation results
 - Developed He diffusion / aggregation simulation code based on kinetic Monte Carlo method (KMC)
 - Investigate differences in formation of bubbles for each metal by KMC simulation

In this study, KMC simulation is performed on interstitial sites of bcc metal, which does not consider vacancy.

Results of DFT calculation

Definition of He bind energy

\[
E_{bind}^n(z) = E_{tot}(Mo, He_z) - E_{tot}(Mo) + E_{vac}(Mo, He_{z-1}) + E_{vac}(Mo, He_{z-2})
\]

The binding energies at interstitial sites

- A metal with monovacancies has a higher binding energy
- A fiber-like nanostructure formable metal has a higher binding energy
- The peak position of the graph depends on the crystal structure

He bubble formation at each temperature in BCC metal's calculated by KMC simulation

Simulation condition

- Box size: 30 x 30 x 30 unit cells
- Periodic boundary
- He/W: 0.01
- The number of helium does not change over time
- Elapsed time: 1µs
- The initial position of helium is randomly arranged at the T-site of each metal
- Diffusion coefficient:
 - \(3.36 \times 10^{-8} \exp(\frac{\Delta E_{0}}{k_B T})\)

Average number of connection per elapsed time

- **Temperature dependence (W)**
 - **Metal dependence (500 K)**

He connection model in KMC

- Single He atom in BCC metal passes through the migration path on the right side and is trapped at the T-site
- In DFT calculation, He tends to be trapped more easily at the T-site than the D-site when aggregated between the lattices and He is likely to be trapped in the vicinity of the second nearest T-site when viewed from the other He
- In this KMC model, He jumps only between T-sites and is regarded as connecting when He is adjacent to the second nearest T-site.

How to obtain \(\Delta E_{connect}\) from DFT calculation result

- We want to express \(\Delta E_{connect}\) as a function of a certain number \(k\) of connections with another He.
- If there is a cluster of \(n\) helium, the total energy that the cluster has \(E_{total}\) is
 \(E_{total} = E_{gas}(z) = E_{gas}(1) + 2E(2) + 3E(3)\)
- Fitting \(E_{gas}(n)\) in the form of \(a + b n^k\)

He diffusion: T-site

KMC calculation method

- What is KMC:
 - A method to make statistical behavior by repeating the particle jumping randomly between lattices with certain event
- What is KMC's event in this research:
 - One helium at a certain T-site moves to some neighboring T-site
 - The probability \(P_i\) that an event \(i\) occurs
 \(P_i = P_0 \exp(-\frac{\Delta E_{i}}{k_B T})\) [s\(^{-1}\)]
 - A migration barrier energy \(\Delta E_{migration}\) that a certain He does not connect to other He
 \(\Delta E_{migration} = \Delta E_0\)
 - A daretrop barrier energy \(\Delta E_{daretrop}\) that a certain He is connected to k other He
 \(\Delta E_{daretrop} = \Delta E_{migration} + \Delta E_{connect}\)
 - \(\Delta E_0\) and \(\Delta E_{connect}\) are obtained by DFT

Summary

- By comparison between DFT calculation and experimental results, fiber-like nanostructures tend to be formed with metals with a higher binding energy
- In order to investigate the relationship between the DFT calculation results and the He bubble formation tendency, we developed He aggregation / diffusion simulation code based on KMC.
- Temperature and material dependence of He bubble formation was observed by KMC simulation and there is an appropriate temperature range for the bubble growth.
- Large bubbles are formed at temperatures as high as 1000 K or more for W and Mo with higher binding energy obtained by DFT