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Introduction Conclusion

Tungsten tiber-reinforced tungsten composites (Wy/W) are presently being || ¢ symmary: The purpose of this research was to determine the effect of fiber volume fraction on the elastic
developed in the EU as next generation W materials for plasma-facing properties of W/W samples manufactured using SPS technique. Laser ultrasonic measurements indicate
components. They possess pseudo-ductility and can overcome some of the change in bulk modulus between 20-40% fiber volume fraction, while no significant difference was observed
limitations caused by the inherent brittleness of pure W. Material properties must between 40-60% fiber volume fraction. To elucidate the dominant contribution on the micro-scale, nano-
be well characterized to allow detailed component design and analysis. indentation measurements were performed to measure the strength of fiber and matrix separately.
The macroscopic mechanical properties of composites depend critically on the || ¢ conclusions
microscopic interplay of the matrix, interface, and fiber. - Using a simple mixture model considering fiber shortness, we find good agreement between laser ultrasonics
If WJ/W composites are to be used as plasma-facing materials, the effect of and nano-indentation measurements — suggesting bulk properties can be described/estimated by linear
hydrogen plasma exposure on the mechanical properties needs to be clarified. superposition of fiber and matrix strengths scaled by the fiber volume fraction.

» Using the present synthesis method, 40~50% fiber volume fraction is highest Young’s modulus due to poorer
w matrix properties at higher fiber volume fraction. Improved synthesis method to increase the matrix strength or
To characterize elastic properties of W{/W by elucidating the interaction of W- using longer fibers may provide a realistic path towards creating stronger W/W composite materials
matrix and W-fiber and to investigate the effects of hydrogen inclusion on approaching pure-W properties in the elastic regime with the additional benefit of pseudo-ductility.
mechanical properties © Further work required: The effect of D-irradiation on the elastic properties was within the scatter of the data.
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Results & Discussion

1) Longitudinal and shear wave velocities 2) Matrix and fiber modulus from nano-indentation | 3) Comparison of modulus by two methods
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